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Abstract 

The assessment of the health status of satellites during operations is one of the major tasks of Satellites Controllers 

(SCs) who continuously check satellites telemetries to detect symptoms of potential anomalies. The continuous 

assessment of satellites health status requires knowledge of the system in order to focus the attention on the subset of 

the hundreds or thousands of telemetries, depending on the mission, that are known to be relevant and that can be 

practically monitored by a human operator.  

Automatic alerting systems are proposed to help supervising satellites operations, reported to use also methods 

based on Artificial Intelligence algorithms. However, most of them, while are able to detect the present status of a 

satellite, are still lacking reliable failure prediction capability or the remaining useful life (RUL) at subsystem or 
components level, taking into account that different contexts of operation may determine different normal behaviour 

patterns that must be distinguished in order to reliably identify anomalies and predict failures. Often this can hardly be 

assessed by operators, unless a repeated behaviour is observed in the telemetries, associated to known failure modes. 

To address the above points, advanced predictive diagnostics systems are necessary. By providing support to 

operators raising early alerts and providing estimates of RUL, they ultimately represent the key enabling technologies 

for the enhancement of missions duration and service availability, as well as for both ground operations costs reduction 

and on-board autonomy. 

This paper describes the approach and the results of a set of algorithms resulting from two decades of R&D and 

application experience by SATE, implemented as a suite of software components, referred to as Diagnostic Kernel 

Modules (DKM). They are now the core of a number of diagnostic applications being proven for space satellites 

constellations, industrial vehicle fleets and hydrocarbons production facilities. 
The advantage of DKM is that they implement a fully context sensitive, interpretable data-driven approach, which 

is fundamental for the understanding of the reasons of a detected anomaly and hardly covered by State-of-the-Art Deep 

Learning.  

An example of application of these technologies is provided with reference to a real anomaly occurred on a flying 

mission, showing how these techniques could have allowed operators identify incipient faults well before the moment 

in which they actually detected them. 
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Acronyms/Abbreviations 

AI  Artificial Intelligence 

AIT  Assembly, Integration and Test 

DKM  Diagnostic Kernel Modules 
I/O  Input/Output 

NN  Neural Network 

R&D  Research and Development 

 

1. Introduction 

During operations, Satellites Controllers (SCs) are in 

charge of checking the behaviour of their assets (satellites 

of a constellation) aiming at detecting anomalous 

behaviours early enough to implement the right 

counteractions for mitigating the related risks and costs. 

In this scenario, the typical methodologies to 
investigate the presence of anomalies in operational 

telemetry data are based on Out-Of-Limit thresholds [1]. 

These techniques are able to assess if the system remains 

within the allowed bounds, but do not allow detecting 

trends of incipient anomalies, which may result in 

unexpected system behaviour during operations.  

Another limitation of the traditional checking 
approaches is that these techniques do not allow detecting 

contextual anomalies, i.e. telemetries behaviour that are 

anomalous only under certain operational contexts.  

In order to promptly detect the anomalous behaviours, 

the operators shall be provided with more advanced 

anomaly detection techniques. 

In addition, when dealing with large satellites 

constellation, it is impracticable for the operators to 

monitor the high number of telemetries produced. In this 

case, the need is to lower the operators’ workload by 

introducing automatic processes that support the 
monitoring operations (e.g., automatic extraction of the 

nominal behaviour of the telemetries, automatic selection 

of the most anomalous telemetries/subsystem to be 
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investigated etc.). This would allow the operators to 

improve the quality of their work and monitor a higher 

number of satellites with the same resources, with 

reduction of operational costs.  

More and more attention has been paid recently in 

space activities to develop solutions capable to learn the 

behaviour of satellites from operations data and improve 

monitoring and diagnostics [2, 3, 4, 5].  
In line with these needs and objectives, the Diagnostic 

Kernel Modules (DKM) suite has been developed by 

SATE and presented in this paper, as a result of two 

decades of R&D and application experience. 

This suite consists of different libraries which 

encapsulate heterogenous and general approaches that 

are now the core of a number of diagnostic applications 

being proven for space satellites constellations, industrial 

vehicle fleets and hydrocarbons production facilities 

(Figure 1). 

 

Figure 1 - DKM libraries name and application domains 

The following sections describe the main approaches and 

methods implemented in this suite that allow improving 

constellations health status monitoring and preventing 

faults. 

 

2. Context based approach 

In order to detect anomalies, a context-based 

diagnostic approach is often necessary.  

Contexts are defined based on external or operative 

conditions that occur several times during a system 

lifetime and that influence the behaviour of the system 
and its subsystems. For instance, a context can be related 

to a positional information, e.g. the satellite eclipse 

condition, or to a functional condition, e.g. specific 

configuration imposed by the operators.  

An example is represented in Figure 2, which shows 

a parameter time series with two different nominal ranges 

depending on the status of Subsystem A (on or off). 

When the subsystem A is OFF the parameter typically 

ranges within the blue bounds (bottom right plot), while 

when the subsystem A is ON the parameter typically 

ranges within the green bounds (bottom left plot). 
In this case, the use of traditional fixed thresholds 

would not allow detecting an anomalous evolution of the 

signal when a specific status of the Subsystem A is active. 

The influence of a context could be impacting a large 

set of telemetries. The use of this approach provides 

significant improvements in the data-driven anomaly 

detection. 

 

 

Figure 2. Parameter time series with two different 

nominal ranges depending on the status of Subsystem 

A. These two different configurations identify two 

different contexts. 

In the DKM approach, a context-based approach is 

implemented to provide reliable early identification of 
anomalies in the behaviour of the system. 

 

3. Constellation health status assessment 

In large satellites constellations, it can be expected 

that most of the satellites sharing same design and 

components will show very similar behaviours under 

similar conditions. 

In this case, it would be useful for the operators to 

characterize an expected nominal behaviour of the 
constellation using data belonging to one or few satellites 

of the constellation. 

In this way, in fact, it is possible to define a nominal 

constellation behaviour to be used as reference for 

checking the health status of all its satellites. This 

approach has been proven effective in DKM applications 

to large fleets of industrial vehicles. 

The benefits of this approach for large constellations 

would be multiple, such as: 

- Different nominal behaviours can be collected 

from different satellites and included in a single 
reference behaviour, reducing potential false 

positive indications due to nominal conditions 

not already observed in some satellites 

- The nominal constellation behaviour can be 

updated as soon as new nominal conditions are 

observed 

- When new satellites are launched, they can be 

monitored as soon as they are flying, with no 

need to collect months of data for building a 

reference behaviour. 
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This particular capability is highly desirable for 

operators, since it allows also to compare the satellites 

among them.  

The assessment of the constellation health status 

relies on the computation of health status quantities at 

satellite and subsystem level, which is performed by the 

DKM diagnostic suite based on the (eventually 

combined) analysis of raw telemetries or of a set of 
derived parameters (or “features”), extracted from the 

raw data. The approaches implemented in these modules 

can be fully data driven approaches (FETCH and Check 

modules), patterns extraction and recognition techniques 

(Consistency maps), or model-based approaches (I/O NN 

based models). In this last approach, depicted in Figure 

3, the health status is based on the comparison between a 

measured variable and its estimate provided by a 

Machine Learning model (such as Neural Networks). The 

analysis of the filtered absolute deviation and its trend 

allows identifying early symptoms of changes in the 
behaviour of the monitored system that could be 

associated to incipient faults. 

The DKM diagnostic module provides a system status 

index, called Health Index (HI = 0: faulty, HI = 100: 

healthy), based on one or several features calculated from 

the raw data.  

 

 

Figure 3. Representation of the health index 

computation approach implemented in the I/O Neural 

Network based module part of the DKM suite. 

 

The DKM models also provide as output the so called 

Modelled Symptoms, that consist of auxiliary quantities 

that allow better understanding of the models reasoning, 

useful in particular for Fault Isolation purposes.  

The output of the DKM diagnostic models can be 

sorted by HI, so that the most critical systems are on the 
top of the list to allows operators executing further 

investigation: they can filter the subsystems/satellites and 

access details of the symptoms and investigate the 

reasons of the detected anomalies.  

In addition, HI values of each analysed parameter can 

be visualized through a heatmap panel that shows all 

telemetries grouped by subsystems in a topological 

representation, such as the one used in the software 

CASTeC, applied to satellite constellations [8,9,11]. 

Another important aspect to be highlighted is that the 

large amount of data that are generated throughout the 

system design, testing and operation phases can be 

exploited to extract knowledge to be used to improve the 

monitoring tasks during the operations, as exemplified in 

the workflow reported in Figure 4. 

 

 

Figure 4 - Simulation data (SIM), test data (AIT) and 

operational data (OPS) can be exploited to extract 

knowledge to be used to improve the monitoring tasks  

 

4. Fault isolation  

Often the effects of an anomalous event can be 

observed in multiple parameters, also belonging to 

different subsystems, which makes the identification of 

the location and cause of a fault more difficult. For this 

reason, in addition to the identification of the anomalies 

through the analysis of the parameters, the solutions to be 

adopted to support satellites operators activity shall 

include advanced tools for fault isolation, i.e. the 

identification of the most likely root causes, from the 

elaboration of the health status of the various systems. 
This goal is addressed in the Fault Isolation Module 

developed by SATE (see example in Figure 5), providing 

the likelihood of the possible failure causes from the 

analyses of the health indexes of all models developed to 

monitor a system.  

 
Figure 5. Example of Fault Isolation Module (FIM) use. 

On the left a set of Health Indexes time series is shown, 

which are input (over a certain time window) to the FIM 

analysis.  
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When dealing with the Fault Isolation module, some 

domain knowledge must be provided by the experts that 

know how the system works to link symptoms of 

anomalies and possible root causes in the so-called Fault 

Trees.  The FIM module then elaborates the health status 

information computed during the monitoring phase, by 

means of statistical approaches to derive root causes 

probabilities, taking as input also the missed and false 
alarms rates of the anomaly detection models, the a priori 

probability of the root causes and the sensitivity of the 

models to these causes.  

A different approach is implemented in the 

Correlation Module of the DKM suite, which implements 

advanced correlation analyses that allow detecting short-

term and long-term nonlinear correlations among 

telemetries, which can also represent potential cause-

effect relationships. The advantage of this latter approach 

is that it also allows extracting new knowledge. In Figure 

6, a set of parameters from a real satellite mission is 
shown. These parameters present some anomalies in the 

periods highlighted in red and yellow points in the plot. 

These anomalies were identified by the Correlation 

module as correlated, which was of unexpected relevance 

and interest for engineers to whom these results were 

reported, as no correlation was expected among those 

parameters, from a pure engineering knowledge, yet this 

correlation appeared during the anomaly. 

 
Figure 6. Example of four correlated parameters 

from a flying mission (correlation was confirmed by 

operators, yet was unknown before). 

 

5. Remaining Useful Life (RUL) estimate 

Once a possible fault is detected in advance, one 

relevant information to the satellite controllers besides 

the possible causes, is the time available before this fault 

evolves into a more severe condition. The prediction of 

the so called Remaining Useful Life of a 

component/system is addressed by a prognostic system.  

The DKM suite includes a Predictive module that 
elaborates the health status information of a system to 

predict when it will reach critical values normally 

associated to a failure. Figure 7 to Figure 10 show an 

example of real application of DKM Predictive during an 

incipient failure. The first figure shows the HI time 

history with its reduction and trespassing of the alert 

threshold, down to reaching a critical condition of the 

subsystem observed. Figure 8 and Figure 9 show the 

predicted time and confidence interval of the critical 

event, at two subsequent times and HI thresholds passing 

(HI = 80 and HI = 60), when DKM is used for real time 

predictive diagnosis. In Figure 10, the last predicted and 

the actual failure times are shown (in green and red 
respectively). It is clear that DKM alerted in due time 

about the anomaly and anticipated the actual event. In 

this case, the failure was not compromising the use of the 

component, yet its condition was not acceptable. The 

component was operating for several hours before the 

maintenance intervention, after which it recovered the 

nominal condition (HI ≈ 100%). 

 

Figure 7. DKM Health Index. 

 

 

Figure 8. DKM failure prediction at first alert based on 

the Health Index trend. 

 

Figure 9. DKM failure prediction update based on the 

Health Index trend. 
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Figure 10. DKM Health Index evolution vs actual 

events. 

 

6. Anomaly detection example 

In this section, a use case from a flying mission is 

presented that demonstrates how the proposed 

methodology can improve the early detection of 

anomalies. 

Real historical data of a flying satellite were 

investigated for the example reported in Figure 11. 

The DKM module used in this case is the Check 

Module performing contextualized anomaly detection. 
The algorithm detects an anomalous behaviour (in 

correspondence of the red dashed line) for the two 

parameters represented in the upper part of Figure 11, one 

representing a payload parameter, the other representing 

a current signal linked to the payload utilization. Through 

discussion with the satellite operators, it was found that 

this anomaly was due to a flight plan that froze, resulting 

in an interruption of data collection for one of the payload 

of the satellites. Then, this anomaly propagated, causing 

the interruption of another payload activity (third signal 

of Figure 11, in correspondence of the green dashed line).  

At this point, the satellite was only performing a basic 
set of actions to keep the system alive; no payload 

activities were ongoing and this resulted in a lower power 

use, as shown by the battery voltage that decreases its 

range in correspondence of the green dashed line (bottom 

part of  Figure 11).  The only time operators were aware 

that flight plan failed was when all the payload data were 

not delivered (in correspondence of the green dashed 

line). This means that the Check module was able to 

anticipate the operators detection by almost two days. 

It is remarked that the anomaly on the current signal 

would not have been detected by checking the bounds of 
the parameter values against fixed threshold. In fact, as 

can be seen in the second plot of Figure 11, the behaviour 

of the signal changed in an anomalous way (in 

correspondence of the red dashed line) although the 

telemetry values did not exceed parameter nominal 

bounds. This is a key point of the diagnostic approach 

exploited by all DKM modules, helping the operators in 

the identification of incipient anomalies. 

In addition, from the result here reported, the 

operators acknowledged that they discovered new 

knowledge and they understood that battery voltage level 

could be used to detect when a flight plan failed. 

 

Figure 11 - Anomaly detection use case 

7. Conclusions 

This paper discussed the advantages of SATE DKM 

and the possible improvements they can represent when 

monitoring large satellites constellations. These modules 
cover different aspects and meet different needs 

expressed by the operators that are in charge of 

monitoring complex systems in different application 

domains.   

DKM can provide predictive alerts on the status of a 

spacecraft system and its subsystems, producing a health 

index associated to each of them. In addition, they have 

proven to be reliable in identifying possible root causes 

and estimating the subsystems Remaining Useful Life. 

One of the major achievements is that DKM 

implement a fully context sensitive, interpretable data-
driven approach combining statistics, Machine Learning 

and experts’ knowledge, that allow the operator to 

understand the reasons of a detected anomaly. This 

interpretability is a feature that is hardly covered by 

State-of-the-Art Deep Learning or, more generally, by 

Artificial Intelligence techniques typically exploited in 

the diagnostic field. 

The DKM configuration phase can be done exploiting 

AIT/AIV and simulation data for new missions, as well 

as operational data of other satellites of the same 

constellation. Then the models can be deployed to 

perform automatic checks at constellation level.  
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