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A ny kind of complex system presents the personnel 
responsible for checking performance with 
demanding tasks. Asset performance management 
(APM) software is often used to help with the 

supervision of operations within plants that reportedly also use 
methods based on artificial intelligence (AI) algorithms. However, 
while these systems are able to detect the present status of a 
plant, most of them are still lacking reliable failure prediction 
capability or the remaining useful life (RUL) at subsystem or 
component level. Different operational structures may 
determine different normal behaviour patterns that must be 
distinguished in order to reliably identify anomalies and predict 
failures.

This article describes the approach and the typical results 
obtainable by a set of algorithms resulting from two decades of 

R&D and application experience by SATE1 - 6, implemented as a 
suite of software components and referred to as Diagnostic 
Kernel Modules (DKM). They are now the core of a number of 
diagnostic applications being proven in the operational 
environment of space satellites constellations (CASTeC4, 6), 
industrial vehicle fleets2,3, and hydrocarbon production facilities, 
the latter of which is under an ongoing technology transfer and 
demonstration project with the cooperation of a leading 
international oil company.

Despite the very different operational environments, 
system characteristics and dynamics, the approach towards 
detecting novel or anomalous systems behaviour – which 
eventually become failures – to form a ranking of likelihood of 
possible failure modes and a prediction of unacceptable 
functionality (i.e. failure), relies on common data-based and/or 
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model-based methods. The DKM suite is an example of the 
successful transfer of technology from ground industrial systems 
(fixed and mobile) to space systems, and vice versa.

The common problem
During operations, Satellite Flight Control Engineers (FCEs) and 
industrial Plants Operation Supervisors (POS) are in charge of 
checking the behaviour of their assets – satellites of a 
constellation and equipment and machinery, respectively – 
aiming to detect anomalous behaviour early enough to 
implement the right counteractions for mitigating the related 
risks and costs. 

In this scenario, the typical methodologies to investigate the 
presence of anomalies in operational telemetry data are based 
on fixed thresholds.7 - 9 These techniques are able to assess if the 
system remains within the allowed boundaries, but do not 
detect trends of incipient anomalies, which may result in 
unexpected system behaviour during operations. 

Another limitation of the traditional checking approach is 
that these techniques do not allow for the detection of 
contextual anomalies, i.e. telemetries behaviours that are 
anomalous under certain operational contexts. The 
context-based approach that is part of the DKM suite provides 
significant improvement in data-driven anomaly detection.

Contexts are defined based on 
ambient or operative conditions that 
occur several times during a system’s 
lifetime. For instance, context can be 
related to positional information, e.g. the 
satellite eclipse condition, or to a 
functional condition, e.g. specific 
configuration imposed by the operators. 
In hydrocarbon processing plants, 
contexts could be specific operational 
phases or season dependent conditions, 
process control settings, or normal 
start-up or shutdown.

An example is provided in Figure 1, 
which shows a parameter time series 
with two different nominal ranges 
depending on the status of subsystem A 
(on or off). When subsystem A is off, the 
parameter typically ranges within the 
blue bounds (bottom right plot), and 
when subsystem A is on, the parameter 
typically ranges within the green bounds 

Figure 1. Parameter time series with two different nominal ranges depending 
on the status of subsystem A. These two different configurations identify two 
different contexts.

Figure 2. Time series of the evolution of the DKM health index (top) as a result of parameter behaviour (bottom), 
with its traditional nominal bounds (dashed red lines). The vertical red bar shows the time at which traditional 
anomaly detection methods raise an alarm.
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(bottom left plot). In this case, the use of traditional fixed 
thresholds would not detect an anomalous evolution of the 
signal when a specific status of subsystem A is active.

The influence of context could impact a large set of 
telemetries. In a hydrocarbon processing plant, for instance, the 
pressure control setting in a reactor unit fed by a gas 
compressor influences the operating point position on its 
operating envelope (i.e. its characteristics map). It is well known 
that when this is close to the surge limit line, flow 
measurement and antisurge valve position oscillations are 
possible and normal, within certain limits. On the contrary, they 
are less affected by oscillations when the operating point is 
further to the right of the surge limit line. Therefore, for 
sensors or compressor diagnostics using flow meter, pressure, 
temperature and valve position as input, and that use 
symptomatic features, the oscillating patterns or value 
thresholds of these signals should take into account the 

influence of the downstream unit setting (i.e. the compressor 
operating context). This makes a context-based approach even 
more powerful.

Another important aspect to highlight is that the large 
amount of data that is generated throughout the system 
design, testing and operation phases can be exploited to 
extract knowledge that can be used to improve the latter 
phases (OPS).

In the space sector, in particular, increasing attention has 
been paid to learning the behaviour of satellites from operations 
data, and improving monitoring and diagnostics as a result.1, 10, 11 

From the operational data, new contexts may be identified, 
leading to the definition of more detailed contextualised 
operative nominal ranges. This same approach may well be 
applied to other types of system, such as automotive power 
train systems and hydrocarbon processing plants.

New strategies can be envisaged to improve anomaly 
detection and investigation during systems operations, 
characterised by:

 n Context-based reasoning.
 n Operational data exploitation.
 n Predictive capabilities to detect trends of degradation and 

anomalies well before these evolve into more severe events.

In the following section, the first and the last points will be 
briefly discussed.

Context-based approach
The context-based approach is part of the DKM software tool 
set that can provide:

 n Early identification of anomalies in the behaviour of the 
system relative to a contextualised standard, characterised 
by specific operations conditions, e.g. configuration, 
manoeuvres, process setting, season or specific known 
fault modes.

Figure 4. Example of four correlated parameters.

Figure 3. Fault Isolation Module (FIM) result – 
example of power train diagnostics.
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 n Identification of root causes or correlated events, enabling 
fault isolation and mitigation strategies definition.

 n Identification of critical operative conditions that may affect 
a system’s service performance.

The DKM diagnostic approach is based on the eventually 
combined analysis of telemetries and on a set of features 
extracted from the raw data, which can be simple statistical 
quantities such as average, maximum, minimum of the 
parameters in certain time windows, or more innovative or 
complex features.

From the analysis of these features, DKM first characterises 
the expected nominal behaviour and then uses this 
characterisation to compute an index that measures the degree 

of anomaly at parameter level, subsystem level and unit level 
(e.g. a satellite of a constellation or a plant unit). 

Figure 2 shows telemetry raw data (blue in the bottom plot) 
of a power train emission control system, with its traditional 
nominal bounds (dashed red lines). This signal shows a normally 
oscillating behaviour associated with the engine power (left part 
of the plot, until Aug 27). Then, the range of the signal oscillation 
changes, but in small increments and within its nominal upper 
bound. 

The DKM provides a system status index, called health index 
(HI), where 0 = faulty and 100 = healthy, based on one or several 
features calculated from the raw data. In this case, the features 
calculated by DKM and used to evaluate the HI determine its 
gradual decrease (upper plot in Figure 2) and, based on defined 
crossing thresholds of the HI, an early alert (Aug 31) that largely 
anticipates the fault detection alarm raised by the traditional 
onboard diagnostics (Sep 18).

 The DKM provides a sorted list of relevant events that may 
need further investigation by in-field or specialist engineers. This 
list contains all of the analysed parameters, sorted by HI in 
increasing order, so that the most critical telemetries are at the 
top of the list. This list allows engineers to execute further 
investigation, as they can filter the parameters, access details of 
the symptoms, and investigate the reasons for the detected 
anomalies. 

The HI is computed not only at parameter level but also at 
subsystem and unit level, and produces both detailed and global 
indications of the health status of the subsystems and system 
(e.g. all compressors, pumps or filters of a plant).

HI values of each analysed parameter can be visualised 
through a heat map panel that shows all telemetries grouped by 
subsystems in a topological representation, such as the one used 
in the software CASTeC, applied to satellite constellations.4 - 6

Anomalies correlation and fault isolation
Often, the effects of an anomalous event can be observed in 
multiple parameters, and can belong to different subsystems. For 
this reason, in addition to the identification of anomalies through 
the analysis of the parameters, the DKM suite includes tools for 
the fault isolation, i.e. the identification of the most likely root 
causes (if known a priori, as shown in Figure 3) or the detection 
of correlated anomaly events or telemetries, which are 
highlighted to the engineer. The engineer can then explore raw 
data and telecommand information in dedicated panels. 

The advantage of an approach that combines early anomaly 
detection and correlated events detection is that it also 
allows for the extraction of new knowledge. In Figure 4, a set 
of parameters from a real satellite mission are shown. These 
parameters present some anomalies in the periods 
highlighted in red and yellow points in the plot. These 
anomalies were identified by DKM as correlated, which was 
of unexpected relevance and interest to the engineers to 
whom these results were reported, as no correlation was 
expected among those parameters.

RUL estimate
Anomaly detection and fault isolation are important capabilities 
of diagnostic tools to be integrated in APM systems, as they 
allow for the reduction or elimination of useless maintenance 
and replacement actions and subsequent costs.

Figures 5. These four graphs depict DKM failures 
prediction based on the HI trend.
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However, the next and most demanded feature of 
diagnostic systems is the ability to predict when a failure is going 
to occur, i.e. the RUL of the component, subsystem or system 
for which the anomaly has been detected (prognostics).

The four graphs in Figure 5 show a real situation whereby 
DKM was applied to vehicle power trains, with no loss of 
generality. The top plot shows the HI time history with its 
reduction and trespassing of the alert threshold, down to 
reaching a critical condition of the subsystem observed (in this 
case, the pollutants absorption system of an internal combustion 
engine). The middle plots show the predicted time and 
confidence interval of the critical event, at two subsequent 
times and HI thresholds passing, when DKM is used for real time 
predictive diagnosis. The bottom plot shows the last predicted 
and the actual failure times (in green and red, respectively). It is 
clear that DKM detected the anomaly in due time, and 
anticipated the actual event. In this case, the failure did not 
compromise the use of the vehicle, however the operation of 
the emission reduction system was unacceptable. The vehicle 
operated for several hours before the stopping at a workshop, 
after which it recovered the nominal condition (HI ≈ 100%).

Conclusion
The context-based telemetry data checking approach is based 
on DKM – a tool that provides predictive alerts on the status of 
a plant, vehicle or spacecraft system or its subsystems, and 
produces a priority list of anomalies, possible root causes and 
RUL estimate.

The advantage of this tool is that it implements a fully 
context-sensitive, interpretable, data-driven approach which is 
beneficial for understanding the reasons behind a detected 

anomaly. This interpretability is a feature that is hardly covered 
by state-of-the-art deep learning or, more generally, by AI 
techniques typically exploited in this field.

Finally, it does not require experts’ knowledge to be 
configured, but simply the knowledge of the relevant operational 
contexts, i.e. specific system operational conditions.  
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